Learning in community at conferences

an illustration containing 20 icons, all of which convey people connecting and learning in communityLegendary Apple designer Jony Ive explains how learning in community helped Apple make the iPhone:

“When we genuinely look at a problem it’s an opportunity to learn together, and we discover something together. We know that learning in community is powerful. It feeds and supports momentum which in turn encourages a familiarity and an acceptance of challenges associated with doing difficult things. And I’ve come to learn that I think a desire to learn makes doing something new just a little less scary.”
——Jony Ive, Apple designer Jony Ive explains how ‘teetering towards the absurd’ helped him make the iPhone

At conferences, we also learn better when we learn in community. At traditional events, expert speakers broadcast content at attendees. But today our minds are increasingly outside our brains. Our ability to learn effectively now depends mostly on the quality and connectedness of our networks, rather than what’s inside our heads.

Two factors govern how we learn in community.

Uncovered learning
First, to optimize participants’ learning networks, modern conferences need to use uncovered learning. Uncovered learning occurs when we use process to uncover and take advantage of the knowledge and resources in the room. Such process increases active learning and incorporates all the expertise and experience available.

Building and supporting a community of practice
And second, learning in community is an ideal way to build and strengthen a conference’s community of practice. Peer conference process provides the opportunity for anyone to contribute, thus encouraging and supporting meaningful connection. Learning in community fosters cooperation and collaboration, creating a community of practice bridge between these two core forms of connection.

How could/do you support and encourage learning in community at your events? Share your ideas and experiences in the comments below!

Cooperative Learning: Lessons from neutrino physics and pair programming

cooperative learning: the famous first example of a leptonic weak neutral current. Black and white Gargamelle bubble chamber photograph showing muon neutrino interacting with an electron.

Cooperative learning

I’ve been a proponent of learning with others for many years. Here are a couple of examples of the advantages of cooperative work.

Neutrino physics

In the 1970’s I was an experimental elementary particle physicist. I was lucky enough to work on one of the most important physics experiments in the second half of the twentieth century. Labs in five countries were exploring the rare interactions of neutrinos in a huge bubble chamber at CERN, the European Laboratory for Particle Physics. We had to view and hand-digitize millions of filmed particle tracks projected onto large white tables. Only a few of these images were expected to show the crucial events we were looking for. So it was vital that we didn’t miss anything important.

Gargamelle film scanning table
Gargamelle film scanning table

When you’re staring at hundreds of similar images for hours on end it’s easy to overlook something. So how did we minimize the chance of missing an infrequent crucial particle interaction?

The answer is surprisingly simple. Different staff scanned every set of film images at least twice on separate occasions. We then checked the set of information on each image to see if everyone agreed on what was going on. If they didn’t, other staff viewed the film again to discover who was right, thus catching missing information or interpretative errors. Statistical methods then allowed us to calculate how accurate each scan operator was, and even to predict the small likelihood that all viewers would miss something significant.

This approach allowed us to be confident of our ability to catch a few, very important particle interactions. The best evidence for our results—which provided the first confirmation that a Nobel Prize winning theory unifying two fundamental forces in nature was indeed correct—was based on finding just three examples.

Pair programming

Another example of how cooperative learning can create more reliable work is pair programming: a technique that became popular in the 1990’s for developing higher quality software. In pair programming, two programmers work together at one computer. One writes code while the other reviews the code, checking for errors and suggesting improvements. The two programmers switch roles frequently. Pair programming typically reduces coding errors, which are generally difficult and expensive to fix at a later stage, at the cost, sometimes, of an increase in programmer hours. Many software companies creating complex software find that the value of the increased quality is well worth any additional cost.

While these two examples of cooperative learning concentrate on reducing critical mistakes, it doesn’t take much of a leap to see that working together on a learning task may increase the accuracy and completeness of learning. As a bonus, the two (or more) learners involved receive an opportunity to get to know each other while they share an experience together. With the right design, there is little downside but much to gain from learning with others rather than alone.